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Abstract 

Anion exchange membrane fuel cells (AEMFCs) have attracted extensive attention in 

the recent years, primarily due to the distinct advantage potentials they have over the 

mainstream proton exchange membrane fuel cells. The anion exchange membrane 

(AEM) is the key component of AEMFC systems. Due to the unique characteristics of 

water management in AEMFCs, understanding the water mobility through AEMs is 



 

key for this technology, as it significantly affects (and limits) overall cell performances. 

This work presents a study of the equilibrium state and kinetics of water uptake (WU) 

for AEMs exposed to vapor source H2O. We investigate different AEMs that exhibit 

diverse water uptake behaviors. AEMs containing different backbones (fluorinated and 

hydrocarbon-based backbones) and different functional groups (various cations as part 

of the backbone or as pendant groups) were studied. Equilibrium WU isotherms are 

measured and fitted by the Park model. The influence of relative humidity and 

temperature is also studied for both equilibrium and dynamic WU. A characteristic time 

constant is used to describe WU kinetics during the H2O sorption process. To the best 

of our knowledge, this is the first time that WU kinetics has been thoroughly 

investigated on AEMs containing different backbones and cationic functional groups. 

The method and analysis described in this work provides critical insights to assist with 

the design of the next generation anion conducting polymer electrolytes and membranes 

for use in advanced, high-performance AEMFCs.  

 

 

 

Introduction 

Anion-exchange membrane fuel cells (AEMFCs) represent a new generation of 



 

potentially disruptive, low temperature fuel cell technology with the potential to 

eliminate the main cost barriers of the mainstream proton-exchange membrane fuel 

cells (PEMFCs).1 In the anion exchange membranes (AEMs), the core component of 

AEMFCs, positively charged (cationic) functional groups (FGs) allow the transport of 

anions (e.g. Cl-, OH-) through the membrane.2 Quaternary ammonium groups (for 

instance, benzyltrimethylammonium, N-methylpyrrolidinium, etc.) are widely used as 

FGs in currently developed AEMs.3,4 

The most important performance characteristics of AEMs for FC applications are anion 

conductivity and water mobility. Both properties are directly linked to each other. 

Figure 1 summarizes the extensive conductivity and water uptake (WU) data that has 

been collected on AEMs that were submerged in liquid water (and not in contact with 

vapor state H2O).5–59 Similarly to a parallel report for proton-exchange membranes 

(PEM) by Kim et al.46, increases in the membrane conductivities of AEMs generally 

correlates with increasing WUs. Conductivity values seem to reach a plateau at σ ≈ 0.1 

S/cm (Figure 1). For AEMs in the Cl- anion forms with ion exchange capacity (IEC) 

of ca. 1.5 meq/g, this plateau is close to the intrinsic conductivity value of the Cl– anion 

in dilute aqueous solution.60  The increase in conductivity with increasing WU61 is not 

the only benefit of keeping AEM well hydrated in an AEMFC. We have recently shown 

that AEMFCs are prone to cathode dry-out during cell operation at high current 

densities,62 an effect that may be counter-balanced or alleviated by using an AEM with 

a high hydration number (the number of water molecules per FG).  
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Figure 1. Conductivity as a function of water uptake from liquid water of AEMs at 

room temperature (RT, 20-30 °C), 60 °C and 80 °C. Adopted from refs.5–59 The 

conductivities† of the AEMs used in this work were also added to aid comparison. 

In contrast to the case where an AEM is immersed in liquid water (see data summarized 

in Figure 1), exposing the AEMs to atmospheres containing different relative 

humidities (RH) will lead to a variation in the corresponding WU levels (and hydration 

numbers). The conductivity, mechanical properties and the physical dimensions of an 

ionomeric membrane are functions of such H2O content, making this an important, 

independent parameter for AEM design.6,64 The equilibrium water uptake at a given RH 

is referred hereafter as WU or WU equilibrium. For AEMFC applications, the WUs 

resulting from sorption of H2O from the vapor phase, rather than sorption from liquid 

water, is of interest since water is supplied to the cell in the form of humidified gases. 

Figure 2 depicts a general scheme showing the important forms of water transport in 



 

† Conductivity measured at 60 °C and 90% RH 

an operating AEMFC. 



 

 

 

 

Figure 2. Schematic diagram of an operating single cell AEMFC system. 

 

In parallel to this significance of high WU, fast water transport across the AEM is also 

critical to obtaining high AEMFC performance, since the actual operating conditions 

will change the water content within the AEM. Startup, shutdown, changes in the cell 

load and environmental alterations of relative humidity and temperature will rapidly 

affect the water distribution within the cell.65 A fast adjustment of the water content 

within the AEM (and anion-exchaneg ionomer located in the electrodes’ catalyst layers) 

in response to these variations will enhance the cell performance and performance 

stability. Recording the temporal WU response to RH step-changes yields the 



 

 

membrane's dynamic WU for the study of kinetics.66 Very few AEM studies have 

focused on  WU from water vapor.66–71 In the previous studies that look at the WU of 

AEMs as a function of the RH, a RH range of 20% – 95 % was typically used. 

Ponce-Gonzalez et al. synthesized radiation-grafted poly(ethylene-co-

tetrafluoroethylene)-g-polyvinylbenzyl-(PVB)-based membranes that contained 

different FGs. The authors compared the WU of the different AEMs with increasing 

RH and found that AEMs with N-methylpiperidinium (MPRD)-methylpyrrolidinium 

(MPY) HGs have similar WUs < 40% RH, while PVB-MPRD showed larger WUs at 

higher RHs.70 They concluded that the higher WU levels allowed by the through-plane 

swelling of  the MPRD-AEM, resulted in a slightly lower anion conductivity. 

While these studies provide useful data on the WU from water vapor at different RHs, 

none of them investigated the kinetics of the WU. To the best of our understanding, 

there have been only two prior studies reporting the WU kinetics characteristics of fuel 

cell relevant AEMs.66,72 Follain et al. examined the influence of plasma-modification 

on the water sorption and diffusion properties of a commercial AEM by increasing RH. 

The authors found that the plasma-treated (crosslinked) membranes had slower sorption 

kinetics than non-crosslinked membranes.66 Mangiagli et al. compared the WU kinetics 

of one poly(arylene ether sulfone) based AEM to various PEMs and investigated the 

H2O sorption time constant as a function of RH. They found that at the kinetics of 

sorption was more rapid at low RH compared to when the RH was raised.72  

While the above studies provide initial and important data on WU kinetics, a thorough 

investigation on both the equilibrium WU and the kinetics of WU of AEMs, including 



 

 

the study of the effect of different fuel cell relevant parameters (temperature, RH, etc.) 

is missing. Herein, we present a thorough characterization of equilibrium WU and WU 

kinetics for three different types of AEM, including the effects of temperature and 

relative humidity. The equilibrium WU results were analyzed by fitting water 

absorption isotherms using the Park model. In addition, we analyzed the WU kinetics 

over a wide range of RH values and temperatures, and summarized the characteristic 

parameters of WU dynamics for the different AEMs. To the best of our knowledge, this 

is the first time this type of WU kinetic study on AEMs has been presented. This study 

is further complemented with microscopic AFM characterization and mechanical 

testing. The results of this study will help to establish appropriate characterization 

methods, that are relevant to functional AEMs, and increase the understanding of the 

processes governing WU in these polymer electrolytes.  

 

  



 

 

Experimental  

Anion exchange membranes  

PPO-based membranes. Two types of poly(phenylene oxide) membranes were 

studied: non-crosslinked (denoted as PPO-TMA, Figure 3(a)) and crosslinked with 

aminated graphene oxide (AGO) (denoted as PPO-AGO, Figure 3(b)). Commercial 

PPO (Sigma-Aldrich) was dissolved, brominated and then aminated with 

trimethylamine. The resulting solution was cast onto a clean glass plate and dried to 

produce the anion conducting PPO membrane. The AGO was prepared by oxidizing 

graphite to graphene oxide, silanizing it with (N,N-

dimethylaminopropyl)trimethoxysilane, chlorinating the latter with thionyl chloride 

and finally aminating it with trimethylamine. The brominated PPO was then cross-

linked with the AGO, cast onto a clean glass plate and dried to obtain an anion 

conducting crosslinked PPO. Detailed description is provided in the Supporting 

Information.     

HMT-PMBI membranes. Composed of 2,2″,4,4″,6,6″-hexamethyl-p-terphenylene 

(HMT) and N-methylated poly(benzimidazolium)s (PMBI), a 89.3% degree of 

methylation (dm) HMT-PMBI-I- membrane was prepared, as described in detail 

elsewhere.73  The cationic functional groups in this membrane are part of the polymer 

backbone (Figure 3(c)), rather than tethered along the backbone as in PPO-based AEMs. 

Preparation procedure of HMT-PMBI-OH− is reported elsewhere.73 The film was 

prepared via casting from DMSO at 80 oC, soaked in H2O for 24 h, and dried under 

vacuum at 80 oC.73 



 

 

ETFE-based membranes. Vinylbenzyl chloride monomer (VBC) was radiation-

grafted onto ETFE films to form intermediate grafted membranes (ETFE-g-VBC) as 

described in detail previously.74 These intermediate grafted membranes were then 

quaternized with trimethylamine (denoted hereafter as ETFE-TMA, Figure 3(d)) and 

triethylamine (ETFE-TEA, Figure 3(e)).74 

All AEMs used in this study were in the chloride form. AEMs were immersed in 1.0 M 

KCl solution for 48 h and the solution was changed three times to exchange the halide 

ions. 

 

Figure 3. The structures of (a) PPO-TMA (b) PPO-AGO (c) HMT-PMBI (d) ETFE-

TMA and (e) ETFE-TEA anion exchange membranes. 

 

WU measurements 

WU equilibrium. The WU was measured using a VTI SA+ instrument (TA Instruments, 

USA). The RH was determined with a two-stage chilled-mirror dew-point analyzer and 

adjusted by mixing dry and humidified nitrogen gas. Each sample was initially dried 



 

 

in-situ for maximum 60 min at 60 °C and RH≈0%. RH was step-changed in intervals 

of 5%, 10% and 20%. Each RH step was maintained until the sample weight reached 

equilibrium (<0.001 wt % change in 5 min). WU is calculated from the 'wet' weight 

[W(wet)] at each equilibrium and the 'dry' weight [W(dry)] at the end of the initial 

drying step, according to:8 

 WU = 𝑊(𝑤𝑒𝑡) − 𝑊(𝑑𝑟𝑦)𝑊(𝑑𝑟𝑦) × 100% 

 

WU kinetics. The WU kinetics was measured by following the mass change of the 

AEM as a function of time, as a result of the applied RH step. The characteristic time 

constant, τ, was calculated by fitting the experimental data with the following:75 

 𝑊 − 𝑊𝑊∞ − 𝑊 = 𝑀𝑀∞
≅ 1 − exp (− 𝑡

τ
) 

 

where Wt is the mass of sample at time t, W0 is the mass at the beginning of the RH 

step, W∞ is the mass of membrane at equilibrium state, 𝑀  is the mass gain at time t, 𝑀∞ is the mass gain of membrane at equilibrium state. 

IEC measurements. IEC was determined by titration using a Metrohm titrator. A 1.0 

M KCl solution exchanged the anions in the samples for 48 h. The excess Cl– (and K+) 

ions were removed via washing with deionized water for 48 h. The Cl– now present as 

a counter-anion in the membrane was displaced into a 1.0 M KNO3 solution for 48 h. 

This solution (without the membrane) was titrated with 0.01 M AgNO3 to determine 



 

 

the Cl– concentration (using a Ag-titrode to detect the titration end-point). The AEM 

was further washed in deionized water, dried in vacuum oven (3-4 h) and weighed. IEC 

is expressed as millimoles of Cl– per gram of dry membrane (meq/g):57 

 IEC =  ∆𝑉 𝐶𝑊(𝑑𝑟𝑦)  

 

where ΔVAgNO3 and CAgNO3 are the end point volume (cm3) and concentration (M) of 

the titrant solution, respectively, and W(dry) is the mass of the dry membrane. IEC is 

further used to calculate the hydration number (λ), the number of water molecules per 

FG:  

 λ =  𝑤/𝑀𝑊𝐼𝐸𝐶 × 𝑊(𝑑𝑟𝑦) 

 

where w is the measured mass of water (g), MW is the molecular weight of water 

(g/mol).  

Mechanical Characterization  

Mechanical properties of polymer films were determined using an ARES G2 rheometer 

(TA Instruments, US) with a Sentmanat Extension Rheometer (SER) fixture (Xpansion 

Instruments). Details on the experimental system have been previously published in 

detail available76 and are summarized here. The AEM samples are attached to the SER 

fixture, which has two counter rotating drums with custom-designed clamps that stretch 

the films in a uniaxial manner to failure. Membranes were stretched at a Hencky strain 



 

 

rate of 0.033 s–1. The stress at break is described as the magnitude of stress applied to 

the film just before breaking. The percent elongation is the percent increase observed 

in AEM length. The Young’s modulus quantifies the elastic nature of the membrane, 

which was obtained from the slope of a stress-strain curve in the elastic region(i.e. at 

very low strains).  

The AEMs under study were cut into strips of about 4 mm (width) by 20 mm (length) 

for testing. Membrane thickness ranged from 60 µm to 130 µm. The SER drums were 

wrapped with double-stick, high temperature tape to prevent film slippage. Screw-down 

pins were used to secure the film to the drum surface; tape was also placed over the 

outer edges of the film, outside the sample area to further reduce slip. Dry conditions 

were achieved using the Forced Convection Oven (FCO) airflow system available for 

the ARES. Humidified, 60 oC conditions were achieved by combining dry and wet air 

streams supplied to a custom-built humidity oven. The humidified tests were allowed a 

soak time of at least 30 min before testing began in order to allow for adequate 

humidification of the membranes. A Vaisala HMT337 humidity probe was used to 

provide real time feedback of the humidity conditions within the oven to the LabView 

software where the gas flows were controlled. 

AFM measurement 

Cross-sections of the membranes investigated by AFM were prepared by microtome 

using a glass knife, after embedding with a two-component epoxy resin (Araldite 502 

with dodecenyl succinic anhydride, cured for 16 h at 60 °C). The cross-sections were 

fixed on a steel sample disc by double-sided conductive adhesive tape, which was 



 

 

impregnated with Pt nanoparticles (Sigma Aldrich, diameter < 50 nm). Prior to all AFM 

measurements, the AEM cross-sections were equilibrated for at least 2 h at the 

respective RH. The accuracy of the RH adjustment was ± 5 %. AFM measurements 

were performed with a Multimode 8 AFM (Bruker) equipped with an environmental 

chamber for controlled relative humidity. The temperature inside the measurement 

chamber was (30 ± 2) °C. Nano-mechanical properties were measured by the Peak 

Force QNM® mode. 



 

 

Results and discussion 

WU equilibrium 

  

 

Figure 4 (a) WU mass gain (black, left y-axis) during a typical water-vapor absorption 

experiment for HMT-PMBI membrane at 30 °C. The corresponding relative humidity 

is shown in red (right y-axis). These data are reproduced in the lower figure - (b) water 

content of the membrane (cm3STP/g, black dots) versus the corresponding relative 



 

 

humidity (%). Black line is the Park model fitting; the colored curves are its three 

individual components.77 

We measured the WU of the membranes via their mass gain at different RH levels.  

Figure 4(a) shows the accumulated WU of HMT-PMBI during step changes in RH. 

Both the WU (relative to the dry membrane) and the RH levels are shown versus the 

experimental time. As the RH increases, the membrane absorbs more water and its mass 

increases accordingly. At each RH step, the membrane was allowed to equilibrate, and 

the next step started once the membrane mass had stabilized (<0.001 wt % change in 5 

min). The WU equilibrium points at each corresponding RH are reproduced in  

Figure 4(b) (black curve). The WU is presented as the calculated water content of the 

membrane, which is able to unify the WU values at different temperatures. As can be 

seen, at low RH levels, in the RH step from 0% to 5%, the highest increase in water 

content is achieved. As RH increases from 5% to 10%, the WU increase per step 

becomes smaller. At medium RH levels (10%-65%) the increase in WU with RH is 

linear. Above RH of 65%, the WU increases exponentially with RH. These results are 

fitted by the Park model77–79, which comprises three separate sub-models: Langmuir, 

Henry and clustering for low, medium and high RH values, respectively. The individual 

contribution of each sub-model is also presented in  

Figure 4(b), in the separately colored curves.  

The Henry-type absorption, which contributes to the whole RH range, is the only 

relevant contribution to the medium RH zone (noted as Zone II). The other two types 



 

 

of absorption contributions are valid either at low- or high-RH zones (Langmuir and 

clustering, noted as Zone I and Zone III, respectively). Therefore, for each AEM, we 

first fitted the linear increase in zone II to Henry's equation, and then subsequently 

determined the zones of relevance to the Langmuir and clustering contributions. The 

end of Langmuir-type absorption zone was set to the point where Henry's linear increase 

begins. Similarly, the starting of the clustering zone was set to the end of the linear-only 

zone. 

The absorption isotherm in  

Figure 4(b) is similar in shape to the few isotherms previously published for other 

AEMs.42,66,69–72,80,81 Equilibrium water uptake in such membranes was previously 

modeled by the Park model77–79 and by the New Dual Mode Sorption (NDMS) model82, 

since both are usually applied to simulate water sorption in hydrophilic polymer 

materials. Nevertheless, since NDMS does not simulate the monolayer described by 

Langmuir's type sorption at low RH, the Park model provides a better fit. In principle, 

Park model describes three types of water absorption (Langmuir, Henry and clustering), 

which can be fitted by five adjustable parameters (Table S1). Previously reported Park 

model fitting has led to poor accuracy of the Langmuir parameters, due to lack of data 

below 20% RH.77–79 Here, we achieved very low RH values to improve the accuracy of 

Park model fitting.  

The Langmuir equation (see Supporting Information) describes the formation of a 

monolayer of water molecules. They reside in the hydration layer around the anions 

and alkali groups due to the strong interactions caused by hydrogen bonds. As the 



 

 

relative humidity increases, molecules are absorbed by an ordinary dissolution 

mechanism (Henry's model). Rapid WU increase in the convex part from the line upturn 

to highest RH is indicative of the formation of bulk water clusters. This phenomenon 

was previously attributed to the flexibility of the membrane matrix and its affinity for 

water.83   

The membranes investigated herein are built from different polymeric backbones, with 

different quaternary ammonium FGs. These differences are expected to affect their WU 

values. In Figure 5(a), the equilibrium water content at 30 °C of all selected AEMs – 

HMT-PMBI, PPO-TMA, PPO-AGO and ETFE (TMA and TEA) – is presented versus 

the RH at each step. All data were fitted by using the Park model, as previously 

discussed. HMT-PMBI stands out from the other membranes with the highest water 

content value, roughly twice as much as the radiation-grafted ETFE-based AEMs: 25% 

versus 12% at RH=65%, respectively. Also below this RH, HMT-PMBI membrane 

absorbs much more water than other membranes used in this study. This is probably 

due to the fact that the HMT-PMBI membrane has a higher IEC compared to the other 

AEMs (Table 1). However, the clustering WU contribution of HMT-PMBI is 

comparable to the PPO-based membranes, (corresponding clustering parameters can be 

seen in Table S1). The very different structures of the two AEM types, as well as their 

different IECs, may be the reason for this behavior. The PPO-based membranes show 

WU levels slightly higher than ETFE-based AEMs. PPO-AGO absorbs more water than 

its non-crosslinked counterpart does. This is reasonable, considering the twice-higher 

IEC and the structure of PPO-AGO, where the PPO backbone is crosslinked by an ionic 



 

 

hydrophilic crosslinker. This may create a larger space volume for water absorption, 

and specifically enhance the formation and existence of clustering. The latter is 

supported by the larger clustering parameter of PPO-AGO and hydrophilic/water-rich 

clusters at the boundaries of the AGO crosslinker at 80 % RH, as was observed by AFM 

(Figure S3(b)). For the two ETFE-based AEMs, the difference in the QA groups (TMA 

versus TEA) is expected to have minor influence on WU. ETFE-TMA absorbed slightly 

more water compared to ETFE-TEA at all RH levels, which is expected due to the 43% 

higher IEC of ETFE-TMA. 

Table 1. Average IEC values of the different membranes 

 HMT-PMBI PPO-AGO PPO-TMA ETFE-TMA ETFE-TEA 

IEC (meq/g) 2.17 1.25 0.66 1.85 1.29 

 

 

The hydration number λ has been widely used to describe water content from water 

vapor sorption in order to study water transport42 and molecular dynamics modeling84 

of various AEM materials. Because λ presents the number of water molecules per FG, 

the use of hydration number could avoid some of the limitations of mass-based WU.46 

Figure 5(b) shows λ versus RH for all the studied membranes. PPO-TMA shows the 

highest λ compared to the other AEMs, owing to its low IEC (Table 1). From a different 

point of view, the low IEC may allow larger distances between neighboring FGs, thus 

facilitating full hydration for each QA. This may also be the case for PPO-AGO, which 

presents λ similar to HMT-PMBI, in spite of its lower water content: not only it has the 



 

 

second lowest IEC, but also some FGs are located on the crosslinking spacers.  
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Figure 5. Water vapor absorption isotherms for HMT-PMBI, PPO-TMA, PPO-AGO, 

ETFE-TMA and ETFE-TEA membranes at 30 °C. The amount of absorbed water is 



 

 

expressed as (a) water content, and (b) λ. Solid lines are Park model fitting. 

 

 

Mechanical properties. The stress-strain characteristics of HMT-PMBI, PPO-TMA and 

PPO-AGO changed between drier and wetter conditions at 60 oC, which agrees with 

other AEMs and PEMs.76,85–89 By using two different humidities, the range of 

mechanical properties of a film can be captured within the context of the water uptake 

study; a more exhaustive study81  was not completed as it is outside of the scope of this 

work. The mechanical properties of ETFE-TMA were studied previously and 

qualitatively agree with the changes with water content discussed here.88 The Young’s 

modulus, shown in Figure 6(a), decreased from dry to wet conditions indicating 

weakening of films with increasing humidity. HMT-PMBI membrane showed the most 

dramatic change of over 55% decrease from 1010 MPa to about 440 MPa between 25 

and 90% RH. PPO-TMA showed over 25% decrease in Young’s modulus from 400 to 

290 MPa at elevated humidity compared to dry conditions. PPO-AGO modulus 

decreased over 50% from 20 MPa to about 8 MPa from dry to wet conditions. The 

decrease in Young's Modulus at wet conditions is in agreement with previous results 

for HMT-PMBI-based AEMs.85 Comparing these changes in Young’s modulus to the 

equilibrium water content (Figure 5(a)), the largest water content was measured for 

HMT-PMBI, which also showed the largest percent change in Young’s Modulus.  

 



 

 

 

Figure 6. (a) Young’s modulus (MPa), (b) stress at break (MPa) and (c) Elongation 

(%) for HMT-PMBI, PPO-TMA and PPO-AGO under low and high relative humidity. 



 

 

Similar to Young’s modulus, the stress at break, in Figure 6(b), decreased about 40-60% 

with increasing humidity. Stress at break values for HMT-PMBI and PPO-TMA 

membranes decreased about 40%. PPO-AGO showed the lowest stress at break values 

of about 2 MPa at dry conditions and 1 MPa at wet conditions. The decrease in the 

stress at break at wet conditions is also in agreement with previous results for HMT-

PMBI.85  

Membrane elongation in Figure 6(c) showed an opposite trend to Young’s modulus and 

strength, and increased with increasing humidity (as the AEMs become more rubbery 

in nature on hydration). Percentage elongation ranged from 4 to 12% for the dry films 

changing from 5 to 38% for the wet films. HMT-PMBI membrane increased over 50% 

from 64% percent elongation at dry conditions to 99% percent elongation at wet 

conditions; PPO-TMA increased significantly from ~ 5% percent elongation to 12%. 

Similarly, PPO-AGO percent elongation increased from about 7% to 13%. Previously, 

HMT-PMBI was reported to have a decrease in elongation in the wet form at room 

temperature.85 The largest increase in percent elongation was measured for the HMT-

PMBI membrane, which also had the largest water content (Figure 5(b)), while similar 

changes in percent elongation for bother PPO-based membranes correlates with similar 

water content changes.   

Additional mechanical and structural properties, investigated by AFM, allowed an 

interesting insight into the sublayers of some AEMs. The AFM measurements focused 

at the interface between the HMT-PMBI membrane and the embedding epoxy material. 

It showed no difference in mechanical properties between the membrane's edge and its 



 

 

regular surface, indicating that the subsurface of the membrane is of the same 

composition as the surface itself, and the membrane is homogeneous. The dependence 

of membrane height above the epoxy on different RH is illustrated in Figure 7, where 

the 3D topography images were additionally colored by adhesion force mapping. The 

adhesion force becomes stronger in wet membranes. With increasing RH and 

membrane swelling, the difference in adhesion force between the epoxy and the 

membrane became more pronounced (Figure 7(d)). Both results indicate homogeneous 

WU when increasing RH. As no hydrophobic interface is detectable, a relatively quick 

WU into the HMT-PMBI is expected, which is consistent with kinetics results shown 

below. 

 

Figure 7. AFM adhesion mappings overlaid on 3D topography of the cross-sectioned 

interface of HMT-PMBI at (a) 40 % RH, (b) 60 % RH, (c) 80 % RH, and (d) 

dependence of adhesion force and height of membrane above embedding material on 



 

 

RH. 

The interface of the PPO-TMA membrane, on the other hand, showed a hydrophobic 

subsurface layer at the membrane-epoxy interface. A low-adhesive step at the interface, 

marked by a green arrow, can be seen in Figure 8(a) and (b). While the adhesion of the 

regular membrane surface increased with increasing RH, adhesion of the subsurface 

layer did not, which means the hydrophobic subsurface layer stays intact even at high 

RH levels, and might hinder/slow down the WU of the membrane. Such difference of 

WU rate was confirmed by the kinetics study in the following section. 

Comparison of the line-profiles of the very same area at 40 % and 80 % RH (green and 

blue box in Figure 8) revealed that the membrane swelled by approximately 4 nm 

(Figure 8(c)). The increasing adhesion and swelling of the membrane suggest that 

within the time frame of the measurements (< 48 h) at RH levels between 40 % and 

80 % RH, no irreversible hydrophobic surface layer was built up. 



 

 

 
Figure 8. AFM adhesion mappings overlaid on topography of the cross-sectioned 

interface of PPO-TMA at (a) 40 % RH, (b) 80 % RH, and (c) the line profiles of 

height at different RH at the same spot marked by the green and blue box in (a) and 

(b), respectively. 

 

WU kinetics from vapor. Since fuel cells are operated under dynamic conditions, fast 

WU responses to changes such as higher current demand is desirable for the AEMs.90 

Fast rate of water transport across the cell AEM into the cathode is critical for high 

AEMFC performance and long-term chemical stability.62,63,91  

Assuming all membranes show exponential kinetics, we derive the characteristic time 

constant, τ, from the expression Mt/M∞ = 1 - exp(-t/τ), as described in the experimental 

section. This time constant quantitatively evaluates the relative kinetic behavior of the 

different AEMs as a single parameter.  



 

 

Figure 9 summarizes the resulting τ for each of the RH steps through the entire RH 

range at 30 °C. In this case, small RH increments were used (5% - 10%), in order to get 

a better resolution of the kinetic changes. Low τ values imply fast kinetic behavior, 

while high τ values signifies slow WU.  
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Figure 9. Characteristic time constant τ, for HMT-PMBI, PPO-TMA, PPO-AGO, 

ETFE-TMA and ETFE-TEA membranes versus RH (15%-95%) at 30 °C. 

 

All of the AEMs studied show a similar behavior of τ versus RH, with low τ (<500 s) 

at low RHs, a slight decrease of τ towards a minimum at medium RHs, and a final sharp 

increase of τ (700 - 2000 s) at RH > 70%. ETFE membranes show the lowest τ 

throughout the entire RH range, probably due to the fast kinetics of water in the 



 

 

fluorinated structure of these membranes. Interestingly, all membranes present their 

lowest (and almost equal) τ at around 40 % RH, meaning the fastest kinetics of these 

AEMs is at the mid-RH region. The higher τ (slower kinetics) at higher RH is typical 

for vapor WU kinetics.64 As mentioned in previous sections, the absorption mode at 

these RHs is clustering, where strong interactions between water molecules lead to a 

decrease in water mobility and consequently to a slower kinetics.92 

Currently, AEMFCs operate at 60 °C, therefore we also studied the effect of temperature 

on the kinetics of water absorption in the AEMs. To simulate humidity conditions at the 

cathode catalyst layer of an AEMFC, we study the WU kinetics at low RH. Specifically, 

we used a modified experimental procedure and measured the WU transient response 

of the membrane to a sudden rise of 20% of the RH, from 5% to 25% RH. To examine 

the effect of the RH level on the kinetics, we also measured the WU transient response 

at higher RH levels, from 25% to 45% and from 45% to 65%.  Figure 10 shows the 

individual WU transient response versus time of HMT-PMBI, PPO-TMA, PPO-AGO, 

ETFE-TMA and ETFE-TEA AEMs for each RH step-change (5%-25%, 25%-45%, and 

45%-65%) at both 30 °C and 60 °C. For each RH step, the WU starts from zero, and 

we define the individual WU as: 

 Individual WU = 𝑊 − 𝑊𝑊  × 100% 

 

where Wt is the mass of sample at time t, W0 is the mass at the beginning of the RH 

step, and Wdry is the mass of the dry membrane. 



 

 

For all membranes, the WU curves in Figure 10 go through a sharp increase 

immediately RH increase, followed by a slow, continuous rise until equilibrium after a 

few minutes. At 30 °C, the WU kinetics seems to be RH-independent. In contrast, at 

60 °C, as RH increases the dynamic WU becomes slower, and the time to reach WU 

equilibrium is longer. For example, WU in HMT-PMBI membrane reaches steady state 

at around 5 min at 5%-25% RH step, 7 min at 25%-45% RH step, and more than 10 

min at the 45%-65% RH step. 

WU reaches equilibrium faster when the temperature increases from 30 °C to 60 °C, 

especially at low RH (5%-25%, Figure 10(a), (d)). For each RH step, the positions of 

these curves with respect to each other in both temperatures are similar. HMT-PMBI 

has the fastest WU response and the highest WU at all RHs and temperatures studied. 

Therefore, an HMT-PMBI membrane uptake the same amount of water faster, as 

compared to all other AEMs. For instance, comparing the response of HMT-PMBI with 

that of PPO-AGO, which has the second-highest individual WU, HMT-PMBI reaches 

the equilibrium WU of PPO-AGO (4%) about 6 times faster – after 5 min compared to 

30 min (Figure 10(c)). 

 



 

 

 

Figure 10. Individual WU of HMT-PMBI, PPO-TMA, PPO-AGO, ETFE-TMA and 

ETFE-TEA membranes versus time at three RH intervals: (a) and (d) 5%-25%; (b) 

and (e) 25%-45%; (c) and (f) 45%-65%  at 30 °C [(a)-(c)] and 60 °C [(d)-(f)]. 

 

Under all conditions shown in Figure 10, ETFE membranes similar kinetics in spite of 

their different FGs and different IECs. Though the final WU of ETFE is lower than 

PPO-AGO's (as already shown in Figure 10(a)), ETFE responds faster to an RH step – 

it takes these membranes a shorter time (initially sharper slope) to equilibrate. This 

observation is clearer at high RH (Figure 10(c) and (f)). At 30 °C and low-mid RH 

(Figure 10(a) and (b)), PPO-TMA takes up water faster than PPO-AGO; at 60 °C and 

low RH, PPO-AGO is faster (Figure 10(d)); in other conditions the PPO-based 

membranes behave similarly at short times, while PPO-AGO always has a higher final 

WU.  

In order to get a better comparison of the WU kinetics, the WU dependence over time 



 

 

was normalized by the equilibrium (final) WU. In this way, the maximum normalized 

WU for all AEM is equal to one, making it is easier to compare the relative rate of each 

AEM. These normalized results, presented in Figure 11, highlight that while PPO-AGO 

has the slowest relative kinetics among all other studied AEMs, ETFE-based 

membranes have the fastest. The relative kinetics of absorption shows the following 

order ETFE-AEMs > HMT-PMBI > PPO. Following a similar analysis by Mangliali et 

al.72, we suggest that the faster ETFE-AEM kinetics is due to its polyolefin backbone, 

which may impart more flexible characteristics.72 However, this hypothesis should be 

further investigated in a more systematic variety of AEMs. Specifically, ETFE 

membranes at low RH levels (25% to 45%) exhibit the fastest kinetics at both 30 °C 

and 60 °C. ETFE-AEMs functionalized with both TMA and TEA have similar kinetics 

behavior, with the only exception at 5 to 25% RH and 30 °C, where ETFE-TMA exhibit 

faster WU response than ETFE-TEA. At a given RH step, temperature increase from 

30 °C to 60 °C enhances WU kinetics for all membranes, as expected. This behavior 

was, for instance, previously described in PEM studies;93,94 however, never reported 

before for AEMs. The positive correlation of kinetics to temperature is more 

pronounced at low RH step. The normalized WU rate of HMT-PMBI approaches that 

of PPO-TMA as the RH increases, at both temperatures.  

 

   

 



 

 

 

Figure 11. Normalized mass gain of HMT-PMBI, PPO-TMA, PPO-AGO, ETFE-

TMA and ETFE-TEA  membranes versus time at three RH steps (5%-25%, 25%-45%, 

and 45%-65%) and two temperatures (30 °C and 60 °C). 

 

Similarly to the discussion above, we used the characteristic time constant τ to analyze 

the effect of temperature on WU kinetics in the AEMs. Figure 12 shows τ for three 

different RH levels (in equal increment steps of 20% RH), at different temperatures 

from 30 °C to 60 °C, for HMT-PMBI and the ETFE-based AEMs. In general, for both 

AEMs the characteristic time constant τ decreases as temperature increases, as expected. 

As was previously observed, the 25%-45% medium RH range step exhibits the lowest 

τ and fastest kinetics. It is interesting to notice the different temperature dependence of 

the kinetics at different RH steps. At mid- and high-RH steps, τ shows a moderate 

decrease with initial increasing of temperature, and remains quite constant above 40 °C. 

In contrast, at the 5% to 25% RH step (black dots), AEMs exhibit a clear decrease of τ 



 

 

from 30 °C to 60 °C. This difference will be further discussed in the following section. 

 

  

Figure 12. Characteristic time constant τ for (a) HMT-PMBI, (b) ETFE-TMA and (c) 

ETFE-TEA AEMs as a function of temperature. 



 

 

Water vapor absorption mechanism. In order to expand the understanding of AEM WU 

and WU kinetics, it is of interest to study the mechanism of water absorption. Vapor 

absorption kinetics may generally depend on three processes:  

(I) interfacial transport across the membrane/gas interface into the membrane;  

(II) diffusion through the membrane from the interface into the membrane; and  

(III) swelling of the membrane to accommodate water molecules inside.95,96  

If the water absorption process is dominated by diffusion mechanism, the transport 

mechanism is said to be Fickian.95 If the water absorption process is dominated by 

mechanisms other than diffusion, or by a combination of different mechanisms, the 

process is called non-Fickian transport. For example, PEMs were commonly described 

by a non-Fickian transport mechanism, mainly attributed to the swelling of the 

membranes.97 The three transport mechanisms (I)-(III) roughly overlap the three 

absorption processes that govern equilibrium in the hydrated membranes: Langmuir 

(interface), Henry (diffusion) and clustering (relaxation/swelling).92 The WU kinetics 

we described above may be approximately described by these mechanisms. The WU 

kinetics in the 5% to 25% RH step would be mostly based on interfacial (Langmuir) 

transport, with some diffusion (Henry) influence, following the boundaries of these 

models in our analysis ( 

Figure 4). Since temperature increase changes interfacial transport more than it 

changes diffusion,92 the enhancement of kinetics with increasing temperature at the 5%-

25% RH step is larger than at other RH ranges. This is consistent with the observation 

in Figure 12 of a sharp decrease of τ at 5%-25% RH, while a slight decrease was 



 

 

observed at other RH ranges. Similarly, the WU kinetics in the 25% to 45% RH step 

would be mostly based on diffusion (Henry) mechanism, which shows the fastest 

transport rate among the three mechanisms.98 This is also in line with the kinetics results 

presented in Figure 11 and Figure 12, where the mid-RH step showed the highest WU 

rate. 

Other characteristics of non-Fickian mechanism are absorption and desorption curves 

that are non-linear and non-symmetric when plotted against square time, t1/2. For 

Fickian transport, on the other hand, absorption and desorption curves tend to be 

primarily linear and symmetric.94 In Figure 13, we compare the individual WU 

(absorption) and water loss (desorption) of HMT-PMBI, PPO-AGO and ETFE-TEA 

AEMs versus t1/2 at the three RH steps, at 60° C. In general it can be seen that HMT-

PMBI and PPO-AGO membranes show similar behavior through all RH range. For 

both membranes, at the medium RH step, they present comparable absorption and 

desorption curves, suggesting a Fickian diffusion process. Similar RH-dependence of 

absorption mechanism was also previously reported for PEM ionomer membranes.99 At 

low and high RHs, the differences observed between absorption and desorption curves 

suggests a non-Fickian transport mechanism. The sigmoidal shape shown at low and 

high RHs was also previously reported by Rivin et al.100 and by Krtil101 in their studies 

on proton conducting Nafion membranes. This classic type of non-Fickican mechanism 

indicates that the transport mechanism is a combination of diffusion and interfacial 

mass transport processes. For HMT-PMBI and PPO-AGO, the absorption WU does not 

exceed desorption water loss at the low RH step (Figure 13 (a) and (d)). The contrary 



 

 

can be observed at the high RH step, where the absorption extent is larger than 

desorption one. Both phenomena are valid for all temperatures (see additional results 

in the Supporting Information). The diffusion-controlled transport at the 25%-45% RH 

step is in line with the fast kinתetics of these membranes, since the diffusion coefficients 

of Fickian mechanism are generally higher than those of complex, non-Fickian 

processes.102  

    

 

Figure 13. Absorption (black) and desorption (red) responses to RH increment steps, 

at 60 °C for different AEMs. 

  

ETFE-TEA membranes on the other hand, show different results (Figure 13(g)-(i)). 

Non-sigmoidal, linear-like shape of the curves is observed at the beginning of the 



 

 

response. Also, the absorption and desorption curves are similar. The corresponding 

curves of ETFE-TMA (see Supporting Information) exhibit comparable behavior. 

Following the ideas mentioned above, this behavior suggests these membranes show 

characteristics of both non-Fickian and Fickian mechanism, which some studies called 

a pseudo-Fickian transport mechanism.103 

Figure 13 supports our observations regarding some of the kinetic behaviors of the 

investigated membranes (Figure 11). The faster kinetics presented by the ETFE-based 

membranes in comparison to HMT-PMBI and PPO-based AEMs is associated with 

Fickian transport, as mentioned above.102 More information about the mechanism of 

water uptake in AEMs, especially at low RH levels, may be useful to overcome the dry-

cathode phenomenon of AEMFCs at high current density. Further, systematic research 

with different AEMs is needed in order to understand the potential correlations of these 

observations to the desired AEM properties and in turn, to the final performance of 

AEMFCs. 

 



 

 

 

Figure 14. Schematic representation of WU and WU kinetics to map AEM WU 

properties.  

 

Figure 14 schematically illustrates and summarizes the results observed on WU 

kinetics of the selected AEMs, while referring to their IECs, cationic groups and 

polymeric backbones. The ETFE-based membranes exhibit the fastest kinetics yet the 

lowest WU; HMT-PMBI membrane has the highest WU yet medium kinetics, while 

PPO-based membranes show the slowest kinetics with a medium level of WU. Based 



 

 

on previous research62,63,91, such WU properties may reflect on the potential use of a 

membrane in an AEMFC. More systematic studies in this front will allow a better 

characterization of AEMs.  

 

 

Conclusions 

Isothermal equilibrium water absorption measurements were performed on different 

AEMs based on HMT-PMBI, PPO, and radiation-grafted ETFE backbones. Detailed 

analyses of the water vapor isotherm modeling, successfully fitted by Park’s model, 

were presented and discussed. HMT-PMBI has the highest equilibrium WU, while 

thecross-linked PPO-based AEM had a higher WU than the non-cross-linked PPO 

(despite a smaller water-to-FG ratio λ). The ETFE-based AEMs exhibited the lowest 

WUs and hydration numbers compared to all the other AEMs tested. The kinetics of 

WU was also measured and discussed. In general, WU kinetics follow the order ETFE- > 

HMT-PMBI- > PPO- based AEMs. AFM measurements support this observation: as 

stable hydrophobic subsurface layer was formed in PPO-TMA membrane, the WU 

kinetics slows down, while HMT-PMBI has no detectable hydrophobic interface.  

The results obtained in this work indicate that the WU kinetics is significantly affected 

by temperature and RH. With an increase of temperature, the kinetics were observed to 

be faster. The influence of RH on kinetics was explained by a combination of diffusion, 

interfacial transport and swelling processes. At low RH, water absorption was 

dominated by an interfacial transport mechanism. At mid-RH levels, the process was 



 

 

dominated by diffusion and the AEMs exhibited the fastest WU kinetics. At high RH, 

the water molecules began to aggregate and form clusters, which blocked the water 

transport pathway and hinder WU kinetics.  

A characteristic time constant τ was used to quantify the kinetics of different AEMsat 

over a range of RH levels and temperatures. Finally, possible mechanisms of water 

transport through the AEMs were analyzed. All the studied AEMs showed Fickian 

behavior at moderate RH step changes (25%→45%). Non-Fickian absorption was 

observed in HMT-PMBI and PPO-based membranes over both low (5%→25%) and 

high (45%→65%) RH step changes. Pseudo-Fickian behavior through the whole RH 

range was observed with the ETFE-based AEMs, which shows the fastest WU kinetics 

among all studied AEMs.  

This work provides first insights into a promising method for characterizing AEMs vy 

quantifying both the equilibrium WUs and kinetics of WU. To the best of our 

knowledge, this is the first study of WU kinetics related to AEMs. Wider, systematic 

WU kinetic data on a broader range of AEMs is now required to provide critical 

information for the design of next-generation AEM-based fuel cells with improved 

water management characteristics. Moreover, a combination of individual WU and 

normalized WU versus time, as presented in this study, provides two different 

characteristics of the material. Such systematic data on other types of common AEMs 

can allow useful insights into design of anion conducting ionomers and membranes to 

be used in high-performance AEMFCs in the future. 

 



 

 

 

Nomenclature 

Acronyms: 

WU – water uptake 

AEM - anion exchange membrane  

PPO - poly(phenylene oxide) 

PPO-TMA - poly(phenylene oxide) membranes functionalized with trimethylamine 

PPO-AGO - poly(phenylene oxide)  crosslinked with aminated graphene oxide 

HMT-PMBI - 2,2″,4,4″,6,6″-hexamethyl-p-terphenylene-b-N-methylated 

poly(benzimidazolium)s membrane 

ETFE-TMA - poly(ethylene-co-tetrafluoroethylene)-g-polyvinylbenzyl membrane 

functionalised with trimethylamine 

ETFE-TEA - poly(ethylene-co-tetrafluoroethylene)-g-polyvinylbenzyl membrane 

functionalised with triethylamine 

RH - relative humidity 

AEMFCs - anion-exchange membrane fuel cells  

PEMFCs - proton-exchange membrane fuel cells 

PEM - proton-exchange membrane 

QA - quaternary ammonium groups 

FG - functional groups 

IEC - ion exchange capacity 

AFM - atomic force microscopy 



 

 

SER - Sentmanat Extension Rheometer  

FCO - Forced Convection Oven  

NDMS - New Dual Mode Sorption  
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