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Abstract

We propose a CNN-based approach for multi-camera
markerless motion capture of the human body. Unlike exist-
ing methods that first perform pose estimation on individual
cameras and generate 3D models as post-processing, our
approach makes use of 3D reasoning throughout a multi-
stage approach. This novelty allows us to use provisional
3D models of human pose to rethink where the joints should
be located in the image and to recover from past mistakes.
Our principled refinement of 3D human poses lets us make
use of image cues, even from images where we previously
misdetected joints, to refine our estimates as part of an end-
to-end approach. Finally, we demonstrate how the high-
quality output of our multi-camera setup can be used as an
additional training source to improve the accuracy of exist-
ing single camera models.

1. Introduction
One fundamental challenge in the 3D estimation of dy-

namic and moving objects lies in finding a rich source of

ground-truth data. This is not just a problem for mod-

ern learning based approaches, that require an abundance

of data in order to make inferences about the world, but

also for the traditional ones such as model-based reason-

ing that make heavy use of constraining prior information

about the world. Even these traditional methods rely on

carefully tuned parameters which control expressiveness of

the model [3], internal connectivity priors [26], or both [7]

that must be adjusted to recover plausible reconstructions.

Extracting 3D data from images is a fundamentally ill-

posed problem that even people find challenging. Unlike

standard image labelling problems, such as Imagenet [5],

that make heavy use of human annotation, we cannot sim-

ply expect people to reliably annotate images with the dis-

tance of joints from the camera. The gold standard for accu-

rately capturing 3D information of full-body human poses

data remains using Multi-camera Motion Capture (MoCap)

systems. These systems make use of early vision tech-

niques based on the identification of markers across mul-

tiple cameras and on the estimation of the 3D location of

these points through triangulation. However, these systems

require strong, unambiguous cues to identify the points. In

practice, this means that successful MoCap relies on the

subject wearing dark tight clothing and brightly coloured

markers, making the captured images unrepresentative of

the natural scenes we wish to reconstruct.

In response to these limitations, some recent works [9,

24, 39] have generated more varied synthetic images using

MoCap pose data as the source of the human poses. Al-

though these images are more varied than MoCap data, they

are still not natural images; and these images tend not to

capture information and confusion caused by the deforma-

tion of loose fitting clothing [11].

Another approach to avoiding these problems is to chain

together different regressors based on multiple data sources;

one network is trained to predict 2D joint locations in nat-

ural images, while a second regressor upgrades these 2D

joint locations to 3D using MoCap data. This approach

comes with caveats similar to those of the methods dis-

cussed above. We might know that a method gives highly

accurate 3D poses on MoCap data and good 2D joint loca-

tions in natural images, but we remain fundamentally un-

sure as to its 3D accuracy in natural images.

As such, effective markerless motion capture is an im-

portant tool to train networks to generate reliable 3D models

from natural images. We present a Huber loss based robust

estimator for fusing multi-view 2D pose predictions into

a coherent 3D pose, consistent with natural human poses.

Unlike existing 3D frameworks, this is not simply done at

the end of a pipeline for 2D joint estimation, but is iterated

through multiple-stages. This carries substantial benefits.

Our use of a robust estimator means that at each stage the

3D model can discard a minority of incorrect 2D joint esti-

mates; the knowledge of where the joints should be in each

image is fed back into the algorithm for image-based refine-

ment.

One fundamental question regarding these datasets com-

posed of millions of frames, such as Human3.6M, is

whether they are in fact large enough. The primary issue

is whether the dataset is sufficiently diverse to allow trained
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Figure 1. Multi-stage architecture of our proposed multi-camera 3D human pose network. Each stage takes images from all the camera

views and the set of per-image 2D joints (expressed as heatmaps) predicted in the previous stage and outputs a refined prediction. In

each stage, the 2D predictions from all views are used to reconstruct a single 3D pose, consistent with all camera views. This 3D pose is

projected back into the image and used to improve predictions in the next stage. See section 3.1 for more details.

networks to exhibit good generalisation to a held-out test

set. Even in restrictive cases, such as the test set used in

Human3.6M, where the held-out data consists of new ac-

tors performing the same movements in similar clothes in

the same studio, there is enough variability in individual

body shapes and in how they move that generalisation is

not guaranteed.

To help address this issue, we demonstrate how unla-

belled data can be labelled by our algorithm and augment

the datasets used for the training of existing methods, lead-

ing to overall better performance on standard benchmarks.

We evaluate multiple networks and find consistent multi-

millimetre improvement. When the differences between

state-of-the-art networks are so small, this raises questions

as to whether we are over-fitting and if time would be better

spent building larger datasets rather than fighting for small

improvements obtained from architectural changes.

Our contribution: We extended existing work on sin-

gle view reconstruction to a multi-camera setting and show

how such single view methods can be enhanced by training

on multiview based annotation of unlabelled data. Our use

of an iterative, and robust, multistage approach to multi-

view reconstruction allows us to correct mistakes in body

joint estimations as they arise, and to think again, reconsid-

ering the 2D position of joints in the image using interim

knowledge of 3D pose.

Unlike the multiview bootstrapping of Simon et al. [29]

which iteratively retrains 2D estimators, our refinement

happens at test-time, not training, and only makes use of

the information contained in a single set of images captured

at one moment in time, rather than requiring extensive re-

training on a larger dataset. As such, our approach can be

seen as complementary to theirs.

2. Prior Work

Deep convolutional neural networks have led to a sub-

stantial improvement in 3D human pose estimation from

one or several images. This task is challenging as it in-

volves solving two ill-posed problems: correctly localising

the joints of the human body within 2D images and cor-

rectly lifting them in 3D. The 2D visual recognition task of

localising body joints in the image is made difficult by mul-

tiple possible confusing factors including occlusion, vari-

ability in the colour, shape and texture of clothing and the

lighting conditions, while the task of lifting into 3D is even

challenging for humans and intrinsically limited by the ex-

istence of perspective ambiguities.

We now review the four most dominant paradigms in

monocular 3D human pose estimation: (i) direct image to

3D pose regression; (ii) 3D pose estimation from 2D joint

estimates; (iii) joint 2D and 3D pose estimation; and (iv) 3D

pose estimation trained on 2D reprojection loss. We also

cover recent deep-learning based approaches to multi-view

3D pose estimation.

Direct human 3D pose from a single image: Many re-

cent approaches treat 3D pose estimation from a single input

image as a fully supervised learning problem and make use

of deep architectures to directly regress the 3D coordinates

of human joints from the image [12, 19, 31, 43]. Much of

the novelty of more recent works has involved combining

end-to-end learning with expressive 3D priors to constrain

the final 3D pose. Li and Chan [12] proposed strategies

to jointly train for pose regression and body part detection,

Tekin et al. [31] used a pre-trained auto-encoder to enforce

structural constraints on the output skeleton. Li et al. [13]

trained a deep neural network to predict similarity scores

between an input image and a 3D pose using a max-margin

loss. Zhou et al. [43] enforce bone lengths in predictions.
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Tekin et al. also leverage 2D image data [32] by adding a

second network stream whose outputs are fused with the

3D regressor. Following the trend in 2D human pose esti-

mation to predict heatmaps rather than regressing 2D land-

marks, Pavlakos [20] predicted per-voxel likelihoods, or 3D

heatmaps, for each joint using a coarse-to-fine approach.

These methods share the disadvantage of generalising

poorly to images in the wild: the need for ground truth 3D

poses to train the image to 3D pose regressor means that

they must be trained exclusively on images captured in Mo-

Cap studios, with all the limitations that come with it.

3D pose from 2D joint estimates: The recent success

of 2D pose detection has led to a proliferation of two-stage

approaches that estimate 3D human poses from 2D land-

marks. Detections are obtained from off-the-shelf 2D pose

detectors such as [18, 22, 40]; or included as an initial step

in the estimation [14]. The task is then to lift the 2D coor-

dinates into 3D either by model fitting [1, 2, 23, 27, 44, 45]

or regression [16, 17]. Moreno-Noguer [17] estimated 3D

pose from 2D inputs using 2D-to-3D distance matrix re-

gression. Chen and Ramanan [4] estimated the depth of 2D

landmarks by matching them to a library of 3D poses. Bogo

et al. [2] fitted a dense statistical shape and pose model,

trained on thousands of 3D scans [15], to 2D joints obtained

with DeepCut [22]; while Sanzari et al. [27] fitted a non-

parametric probabilistic pose model. Martinez et al. [16]

show how even a simple regressor - a feed-forward network

with residual connections and batch normalization - vastly

outperforms previous approaches when given ground truth

2D landmarks as input, suggesting that the largest source of

errors in 3D pose reconstruction is incorrect 2D estimation.

Joint 2D-3D pose estimation: Several monocular ap-

proaches solve for 2D and 3D pose jointly [25, 28, 30, 32].

Rogez et al. [25] proposed an end-to-end architecture that

combines a region proposal network for human localisation

with classification and regression branches for joint estima-

tion of 2D and 3D human pose. Sun et al. [30] adopted a

bone based representation for the pose and propose a unified

setting for 2D and 3D pose estimation that encoded long

range interactions between bones. Both approaches achieve

best results when a 2D loss is combined with the standard

3D loss. Zhou et al. [42] shared common representations

between the 2D and the 3D tasks inside the network which

is trained end-to-end with both 2D and 3D losses.

Training with 2D-only loss: A few recent approaches

bypass the need to annotate images with 3D ground truth la-

bels by keeping an internal 3D representation of the pose but

training based on 2D reprojection losses. These approaches

benefit from both their ability to generalise to in-the-wild

images as they do not rely on 3D annotated images that can

only be captured in studios; and the added structural 3D

pose priors afforded by internal 3D representation. Tome

et al. [35] proposed a multi-stage architecture that reasons

jointly about 2D and 3D pose to improve both tasks. Key

to their architecture is a 3D lifting module that reconstructs

2D estimated landmarks in 3D and projects them back into

2D, as their end-to-end training minimises deviations of the

reprojected 3D landmarks from the ground truth 2D labels.

Wu et al.’s single image 3D interpreter network [41] also

uses a loss based on the 2D re-projection error of predicted

3D landmarks, along with a supervised 2D landmarks to

3D pose regressor. Tung et al. [38] combine a similar 2D

reprojection loss with an adversarial loss and later [37] pro-

pose to combine strong supervision from synthetic data with

a self-supervised loss based on consistency checks against

2D estimates of keypoints, segmentation and optical flow.

Multi-view human pose: Elhayek et al. [6] fused 2D

body part detections, from a ConvNet-based 2D pose esti-

mation, with a generative model-based multi-view tracking

algorithm to reconstruct human pose in indoor and outdoor

datasets. Pavlakos et al. [21] proposed a geometry-driven

multi-view approach that automatically annotated images

with 3D poses starting from generic 2D detections [18].

Their harvested 3D poses are used to demonstrate their

effectiveness in two applications: 2D pose personalisa-

tion and training a ConvNet from scratch for single view

3D human pose prediction. Trumble [36] made use of a

CNN trained on probabilistic visual hull data obtained from

multi-viewpoint videos, and an LSTM framework to exploit

the temporal continuity of reconstructions.

Unlike approaches such as [6, 21, 36], we do not per-

form pose estimation1 for each view before fusing them in

a final stage. Instead, we generalise multi-stage approaches

[35, 40] to multiple views, and iteratively seek an estimate

consistent over all views.

3. Our Formulation

We follow [35, 40] in maintaining a six stage algorithm.

At each stage our CNN takes two inputs (see Figure 1): (i)
the set of images from different cameras we are trying to

reconstruct from; and (ii) the set of 2D pose heatmaps pre-

dicted in the previous stage for each multi-view image. In-

side each stage the algorithm independently improves the

2D locations of joints in each image and uses them to re-

construct a 3D model consistent with the 2D joint predic-

tions for all the views. Maintaining this internal representa-

tion of pose as a 3D model, coherent with all views, allows

us to inject 3D information into the learning process. In

addition, by reprojecting the 3D model into all the camera

views using known camera geometry we can use 2D losses

throughout all the stages bypassing the need for 3D annota-

tions associated with the images.

This novel multi-view and multi-stage reconstruction al-

lows us to rethink joint locations in light of knowledge of an

1Silhouettes in the case of [36].
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interim 3D reconstruction, to recover from mistakes made,

and to try again to find support in the image for the predic-

tions of joint locations made by a coherent working hypoth-

esis of 3D positions. Details are given in section 3.1.

Importantly, our approach maintains the computable

sub-gradients of Tome et al. [35] when generating and pro-

jecting the 3D model. This allows the system to be trained

end-to-end. We make substantial changes that improve the

robustness of the system while preserving the guarantees

of [35] that the model fitting procedure will not get stuck in

poor fitting local optima. This is done by replacing the Least

Squares procedure of [35] with an Iterative Reweighted

Least Squares (IRLS) approach that mimics the Huber loss

and preserves convexity for any particular choice of planar

rotation. Details of this are given in section 3.4.

3.1. Details of the Network

Our proposed architecture is a multi-stage convolutional

neural network inspired by the work of Tome et al. [35],

which was in turn an extension of the architecture intro-

duced by Wei et al. [40]. They proposed Convolutional Pose

Machines (CPM), a multi-stage 2D pose estimator in which

each stage performed a refinement of the estimate computed

by the previous stage.

As shown in Figure 1, the first step in each stage inde-

pendently predicts, in every camera view, the 2D pose of

the person in the image. These predictions take the form

of heatmaps generated via a convolutional architecture with

the weights shared between all camera views.

These heatmaps are generated by a: (a) a set of convo-

lutional layers shared by all stages that are performing fea-

ture extraction; followed by (b) a set of convolutional layers,

unique to each stage, that compute a heat map representing

the location of each joint. All stages (except stage 1) also

take as input the heatmaps generated in the previous stage.

The size and connections of these convolutional layers re-

main the same as in CPM [40]. However, we additionally

apply batch normalization before the ReLu.

The next step within each stage takes heat-maps as in-

put and computes the 3D pose most consistent with the 2D

information provided by each camera view. Heat-maps are

then converted into 2D locations by selecting the most con-

fident pixel as the location of each of the joints

Icp = argmax
(u,v)

Hc
p[u, v]

where Hc
p is the heat-map representing joint p for camera

view c. These 2D poses are then used by the multi-camera

probabilistic 3D pose estimator (described in section 3.4) to

generate a single 3D pose that agrees over all the different

camera 2D poses. This pose is projected back onto the 2D

image for each camera view using a weak perspective pro-

jection, and the new projected 2D poses are converted into

heat-maps by a Gaussian convolution

Ĥc
p[u, v] =

{
1 if(u, v) = Îcp
0 otherwise.

where Îcp is joint p of the projected 2D pose in camera c.
The final operation fuses the heat-maps regressed by the

convolutional layers with those estimated by projecting the

3D pose into 2D. This fusion is implemented by apply-

ing a convolutional layer with filters of size [1× 1] and

number joints filters, to each camera view independently,

giving a set of heatmaps, one for each choice of joint and

camera.

As an implementation detail, all the computations per-

formed on each camera view make use of the same con-

volutional operations; this enables us to have an efficient

implementation by setting the batch size to be equal to the

number of cameras and ordering the images appropriately.

3.2. Studio Setup and Camera Assumptions

We make use of the Human3.6M dataset [9] for training

and evaluation. This dataset was generated in a multi-source

capture studio with the ground-truth reconstructions coming

from a ten camera Vicon studio, and four video cameras

facing each another at right angles and far enough to fully

capture a 4 by 3 meter studio environment.

Following the camera model and inference of [35], we

continue to assume a scaled orthographic model. Impor-

tantly, we assign the same choice of scale to all cameras.

This assumption is noticeably stronger than the previous

scaled orthographic reconstruction of [35]. With the four

cameras facing towards each other, our stronger assumption

does not allow increase in overall scale due to movements

towards one camera, as this would correspond with move-

ment away from another camera and a corresponding de-

crease in scale. However, it does allow for changes in scale

of the object itself allowing our algorithm to handle people

of different sizes.

3.3. Additional data

One concern, when trying to show how additional data

can lead to improved results in the 3D reconstruction of

people, is the restrictive form of the Human3.6M evaluation

dataset. With the limited appearance and repetitive range of

actions, that occur both in the training and in the evaluation

sets, networks trained on more general datasets might per-

form worse than those trained on restrictive datasets that are

closer to the test data. To avoid such issues, we make use

of an additional set of actors performing the same actions

captured by the authors of the Human3.6M dataset.

As with many datasets in computer vision, Human3.6M

was originally subdivided into training, test and validation

subsets; the reconstructions for the test set were not made
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publicly available, to avoid over-fitting. However, for his-

toric reasons, the test set has gone largely unused, with de-

tailed evaluations being reported on the validation set. This

means that we have access to a publicly available additional

corpus, composed of unlabelled images from 2 men and 1

woman2, captured in the same environment.

To illustrate how 3D data gathered by our method can

improve existing results, we augment two existing networks

using this data. Our results show clear improvement over

published results, and help make the case not just that better

networks are needed for better results, but also more data.

Additional data can help 3D predictions in two separate

ways, either by improving the 2D localisation of joints, or

by improving the 3D lifting from the same 2D inputs. To

show that our method returns results of sufficiently high

quality to improve both components, we perform two sep-

arate experiments: (1) we show improvements on 2D joint

prediction while keeping the 3D lifting constant, and (2)

we show how a generic lifter that takes as input precom-

puted joint locations can be improved by training on our

additional 3D data.

3.4. 3D pose estimation

We now review the pose estimation of Tome et al. [35]

that generates a 3D pose from 2D joint locations; discuss its

generalisation to multi-camera systems; and modifications

to improve robustness to outliers and its stability.

Tome et al. suggested approaching human pose estima-

tion using a formulation inspired by non-rigid structure

from motion. Assuming a known basis of human poses

given by a set of matrices e, and standard deviations σ, and

a rest shape μ, they suggest estimating the cost of a particu-

lar parameterised human pose, given 2D locations I , as:

argmin
R,a

||I − sΠER(μ+ a · e)||22 + σ2 · a2 (1)

Where Π is the canonical orthographic projection matrix,

E a known transformation from the world co-ordinates to

those of the camera, R is a planar rotation matrix that de-

scribes the rotation of the human pose in the ground-plane,

and s is the estimated per-frame scale. Here a is a vector

of basis coefficients, e a 3D tensor of dimensions basis ×
points × 3. The tensor product a · e is defined as

∑
i aiei,

and the square terms in the final expression refer to an el-

ementwise square. The closest parameterised pose for 2D

data I was given by minimising the cost:

argmin
s,a,R

P (s, a,R|I) (2)

The authors observed that, for any given choice of rotation,

the global minima could be interpreted as an unconstrained

linear least squares problem and solved efficiently. They

2Human3.6M dataset does not provide video for subject S10.

suggested brute forcing over a small set of ground plane

rotations to quickly find a global minima without needing

to worry about getting stuck in poor quality local optima.

We make several additions to this framework:

3.4.1 Rotation marginalisation for improved stability

Tome et al. [35] observed that using more than 80 rota-

tions did not improve the overall accuracy of the reconstruc-

tions. Although this is true, their algorithm often yields

flickering and unstable reconstructions when run on video

data. Much of this flicker can be attributed towards try-

ing to reconstruct ambiguous poses that can be equally well

explained by two or more different rotations. We write

the optimal reconstruction given a choice of rotation R as

QR = Rs(μ+ a · e) where a, and s are found by solving

the following optimisation problem

{s, a} = argmin
s,a

P (s, a,R|I) (3)

Marginalising over the set of rotations R, gives the follow-

ing 3D body pose estimate:∑
R∈R exp(−ρP (sR, aR, R|I))QR∑

R∈R exp(−ρP (sR, aR, R|I)) (4)

This elimination of flickering is highly desirable, not just

in that it makes the reconstructions of video appear more

lifelike and appealing to humans, but also in that the stabil-

ity of the reconstructions carries important semantic infor-

mation. If we are to use 3D reconstructions of people as a

first step in action analysis, the stability and dynamics of the

reconstructions contains important information that informs

our understanding of the actions.

3.4.2 Principled shape warping for multiple views

Tome et al. [35], approached the problem of reconstruction

through the lens of probabilistic PCA [34] with a known

basis. In their framework, after generating a reconstruction

from basis coefficients, a final stage is to warp the recon-

struction to lie closer to the input data. In the context of 3D

reconstruction from an single orthographic camera this can

be done as post processing, where a weighted average of the

x and y coefficients of the image and the reconstruction QR

are taken together while the z component remains constant.

When multiple cameras are being used, this fusion be-

tween the model and the data can not be performed as a

simple post-processing step. Instead, we jointly estimate

a new shape Q̃ consistent with all frames and close to the

model estimate. Given a rotation R, this can be written as

argmin
Q̃R,s,a

λ
∑
c∈C

||IC−ΠEQ̃R||22+||Q̃R−sR(μ+a·e)||22+σ2·a2

(5)
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where C refers to a set of cameras, λ is a known scale

factor, and E is the known external calibration that aligns

world co-ordinates with the camera’s frame of reference.

As is standard in geometry, this formulation finds the sin-

gle body pose that best explains all viewpoints; this is not

equivalent to applying a single camera approach to each

view and averaging the results. Again, this can be directly

solved as an unconstrained least squares problem given R;

and as discussed in the previous subsection, we continue to

marginalise over the space of rotations.

3.4.3 Robust losses for outlier rejection

Finally, the use of the squared Frobenius norm as in the

previous section makes the reconstruction less robust to oc-

clusions and to misdetected joints. If the camera views

were aligned, the first term of (5) would be minimised by a

pose that averages over the different predictions. Use of the

Frobenius norm would mean that if only one prediction is in

the wrong place, it would “pull” the reconstruction towards

the mistake rather than discarding it as an outlier. Instead

we replace the squared Frobenius norm with a Huber loss.

argmin
Q̃R,s,a

λ
∑
c∈C

||Ic−ΠEQ̃R||ε+||Q̃R−sR(μ+a·e)||22+σ2·a2

(6)

where the Huber Loss ||x||ε =
∑

i |xi|ε and

|x|ε =
{ |xi|2

2 if |xi| ≤ ε

ε|xi| − ε2

2 otherwise.
(7)

Although (6) is not a least square problem, it can be solved

as an iterative reweighted least squares problem (IRLS). In

practice, 5 iterations of least squares are sufficient to obtain

a high quality solution. Although robust to outliers, this

new loss remains convex given a choice of rotation, so local

minima are not a concern. The use of IRLS for a fixed num-

ber of iterations allows gradient propagation and end-to-end

training as in [35].

4. Refining Existing Monocular Networks
Given the noticeable improvement in accuracy obtained

by using multiple cameras rather than just one (see table

1), it is natural to ask if our results can improve the per-

formance of existing networks by labelling previously unla-

belled data, and using this to augment the training set. This

labelling of new data can be seen in Figure 2.

Although conceptually simple, multiple small issues

arise from most experiments reporting results on an auto-

matically preprocessed version of the Human3.6M dataset.

First, images are independently run through the Mask R-
CNN architecture [8] in order to extract both the bounding

box and the silhouette of the person represented in the im-

ages. This information is essential for cropping the area of

Figure 2. Labelling data using multi-camera 3D pose estimator.

the image containing the person in a similar manner to what

is done on images with ground truth 2D data, guaranteeing

that: 1) all the joints are inside the cropped region, centred

around the hips; 2) the aspect ratio is one and 3) 25 pixels

of margin are added to the cropped region. These cropped

regions are then used as inputs to our multi-camera network
which estimates 2D body poses for each camera view and

identifies the 3D pose most consistent with the set of 2D

poses. Finally, the 3D pose is projected into 2D for each

camera view using the known camera calibration.

Data labelled by our approach is used to extend existing

datasets. We simply treat the predicted bounding-boxes, 2D

landmarks and 3D reconstructions the same way as existing

ground truth training data.

5. Experiments

We evaluate on Human3.6M using the two standard pro-

tocols for evaluation. In protocol 1, the training set con-

sists of 5 subjects (S1, S5, S6, S7, S8), whereas the test

set includes subjects (S9, S11). The error metric is the Eu-

clidean distance from the estimated 3D joints to the ground

truth, averaged over all 17 joints of the Human3.6M skeletal

model, and without alignment. The evaluation is performed

every 5th frame, as in [45], due to the high similarity of sub-

sequent frames.

Protocol 2, introduced by Bogo et al. [2], uses the same

training and testing set as protocol 1. However, evaluation

is performed on all frames captured by camera 3 during trial

1, and the error metric reported is the average per-joint 3D

error after aligning the reconstruction with the ground-truth

using Procrustes analysis.

Table 1 shows a comparison of our multi-camera ap-

proach with other state-of-the-art techniques (both monoc-

ular and multi-view) under protocol 1. Our proposed ap-

proach outperforms monocular methods, reducing the er-

ror by over 10 milimetres, and gives better results than

the best multi-camera method of Pavlakos et al. [21] with

an improvement of more than 4 milimetres. We also cre-

ate a novel baseline based on generating monocular recon-

structions from each view using the method of Martinez et
al. [16], and averaging them after alignment. This performs

almost as well as Pavlakos et al., and is reported in table

1 as “Multi-view Martinez”. Table 2 shows a comparison

with other state of the art approaches using protocol 2.
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Protocol 1 Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

LinKDE [9] 132.7 183.6 132.4 164.4 162.1 205.9 150.6 171.3 151.6 243.1 162.1 170.7 177.1 96.6 127.9 162.1

Li et al. [13] - 136.9 96.9 124.7 - 168.7 - - - - - - 132.1 69.9 - -

Tekin et al. [33] 102.4 158.5 87.9 126.8 118.4 185.1 114.7 107.6 136.2 205.7 118.2 146.7 128.1 65.9 77.2 125.3

Zhou et al. [45] 87.4 109.3 87.1 103.2 116.2 143.3 106.9 99.8 124.5 199.2 107.4 118.1 114.2 79.4 97.7 113.0

Tome et al. [35] 64.9 73.5 76.8 86.4 86.3 110.7 68.9 74.8 110.2 172.9 84.9 85.8 86.3 71.4 73.1 88.4

Pavlakos et al. [20] 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9

Tekin et al. [32] 53.9 62.2 61.5 66.2 80.1 79.5 64.6 83.2 70.9 107.9 70.4 68.0 77.8 52.8 63.1 70.8

Katircioglu et al. [10] 54.9 63.3 57.3 62.3 70.3 77.4 56.7 57.1 79.0 97.1 64.3 61.9 67.1 49.8 62.3 65.4

Zhou et al. [42] 54.8 60.7 58.2 71.4 62.0 65.5 53.8 55.6 75.2 111.6 64.15 66.05 51.4 63.2 55.3 64.9

Martinez et al. [16] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Multi-View Martinez 46.5 48.6 54.0 51.5 67.5 70.7 48.5 49.1 69.8 79.4 57.8 53.1 56.7 42.2 45.4 57.0

PVH-TSP [36] 92.7 85.9 72.3 7 93.2 86.2 101.2 75.1 78.0 83.5 94.8 85.8 82.0 114.6 94.9 79.7 87.3

Pavlakos et al. [21] 41.2 49.2 42.8 43.4 55.6 46.9 40.3 63.7 97.6 119.0 52.1 42.7 51.9 41.8 39.4 56.9

Ours 43.3 49.6 42.0 48.8 51.1 64.3 40.3 43.3 66.0 95.2 50.2 52.2 51.1 43.9 45.3 52.8
Table 1. Quantitative evaluation on the Human3.6M dataset. We report 3D pose error results expressed in mm using the metric defined

in protocol 1. All methods above the first line are monocular while those below ( [21, 36] and Ours) are multi-camera approaches.

‘’Multi-View Martinez” refers to independently reconstructing from each monocular view using [16] followed by averaging.

Protocol 2 Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Akhter & Black [1] 14j 199.2 177.6 161.8 197.8 176.2 186.5 195.4 167.3 160.7 173.7 177.8 181.9 176.2 198.6 192.7 181.1

Ramakrishna et al. [23] 14j 137.4 149.3 141.6 154.3 157.7 158.9 141.8 158.1 168.6 175.6 160.4 161.7 150.0 174.8 150.2 157.3

Zhou et al. [44] 14j 99.7 95.8 87.9 116.8 108.3 107.3 93.5 95.3 109.1 137.5 106.0 102.2 106.5 110.4 115.2 106.7

Bogo et al. [2] 14j 62.0 60.2 67.8 76.5 92.1 77.0 73.0 75.3 100.3 137.3 83.4 77.3 86.8 79.7 87.7 82.3

Tome et al. [35] 14j - - - - - - - - - - - - - - - 79.6

Moreno-Noguer [17] 14j 66.1 61.7 84.5 73.7 65.2 67.2 60.9 67.3 103.5 74.6 92.6 69.6 71.5 78.0 73.2 74.0

Ours 14j 40.4 42.8 39.8 44.8 47.5 59.1 36.6 37.0 55.8 82.3 46.8 48.9 48.2 38.8 40.4 47.6

Pavlakos et al. [20] 17j - - - - - - - - - - - - - - - 51.9

Martinez et al. [16] 17j 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7

Ours 17j 38.2 40.2 38.8 41.7 44.5 54.9 34.8 35.0 52.9 75.7 43.3 46.3 44.7 35.7 37.5 44.6
Table 2. Quantitative evaluation of our approach against other methods using protocol 2 on the Human3.6M dataset. Note that all other

methods are monocular. The 14j/17j annotation indicates the number of joints used in evaluation.

Formulation Error Protocol 1 Error Protocol 2
Squared Frobenius (no averaging) 59.6 mm 51.1 mm
Squared Frobenius 59.4 mm 51.8 mm
Huber loss 52.8 mm 44.6 mm
Huber loss (2 cameras) 64.2 ± 1.6 mm 52.8 ± 1.4 mm

GT Orthographic Triangulation 27.9 mm 20.7 mm

Table 3. Reconstruction error for different variants of our approach

(see section 3.4 for details.) Huber loss (2 cameras) shows the

mean and standard deviation of the reconstruction using only a

pair of cameras at right angles with one another. GT Orthographic

Triangulation shows the error due to the use of an orthographic

camera, i.e. the the reconstruction error given perfect detections.

Table 3 shows the importance of the changes to the pose

estimation made in 3.4; particularly the use of a more robust

Huber loss in place of the squared Frobenius norm, (Eq. 5

and Eq. 6). Although, many works make use of the Huber

loss as a more stable approximation of the �1 norm, this is

not the case for us. Upon inspection, we found that the opti-

mal choice of ε that resulted in the lowest 3D reconstruction

error treated half of the joints with �1 norm and the other

half with the squared Frobenius norm which confirms that

the Huber loss is effectively used to weigh the relevance of

each joint on a case by case basis.

A small improvement can also be seen from marginalis-

ing over the rotations, although this modification primarily

improves the stability of reconstructions rather than reduc-

ing the overall error. Finally we show how much error can

be attributed to the camera model, by triangulating ground-

truth detections under orthographic assumptions. This is

reported as “GT Orthographic Triangulation”.

480



Approach Experiment Human3.6M dataset Δ %

Train Train + new data

Tome et al. 3D error (P#1) 88.4 mm 84.4 mm 4.0 4.52

[35] 3D error (P#2) 70.7 mm 67.2 mm 3.5 4.95

2D error 9.5 pix 8.6 pix 0.9 9.47

Martinez et al. 3D error (P#1) 75.8 mm 72.5 mm 3.3 4.35

[16] 3D error (P#2) 57.6 mm 55.9 mm 1.7 2.95

Table 4. Quantitative evaluation performed on existing ap-

proaches, demonstrating the performance gain when various mod-

els are trained with our additional data.

5.1. Improving Existing Monocular 3D Pose Net-
works

Table 4 shows the results of existing pose estimation

techniques [16, 35] evaluated on a variety of experiments

where the models were trained using ground-truth training

data provided by the Human3.6M dataset [9], and additional

unlabelled data (Subjects {S2, S3, S4}), automatically la-

belled as previously described in section 3.3.

In both approaches, we took the training hyper-

parameters provided by the papers and retrained the respec-

tive models using the augmented training data, without fine-

tuning the hyper-parameters.

The authors of [16] no longer have access to the retrained

stacked-hourglass 2D networks that they take as an input, so

we can not compute their 2D joint estimations on the held-

out unlabelled data. Instead we repeat their experiments,

by training the network using the 2D poses estimated by

Tome et al. [35] as input3, and using these inputs to drive

the 3D prediction. Without optimising the hyperparameters,

this leads to a noticeable decrease in the performance of

the algorithm over that reported by their paper, even though

Tome et al. report a lower 2D error than that of Martinez et
al. Despite this, we still observe a substantial improvement

in the 3D reconstruction from using more data. Note that for

this experiment, we do not update the 2D pose estimations,

and all improvement comes from the updated 3D estimator.

To illustrate that our method also improves 2D joint lo-

calisation, we also retrain the network of Tome et al. As an

initial step in training the algorithm, Tome et al. compute

a shape basis from MoCap data. This basis is not updated

during the end-to-end training of the pose estimator, and the

network itself is trained to improve 2D loss in joint predic-

tions, returning a 3D pose as a side-effect of its 2D pose

computation. Although we could update the 3D basis us-

ing our newly labelled data, we restrict ourselves to only

updating the 2D pose predictor. As can be seen in table 4,

this leads to a significant improvement in 2D error, and a

corresponding reduction in the 3D error.

Figure 3 shows some sampled 2D and 3D poses with

the respective reconstruction error for some multi-camera

3The network of Tome et al. [35] returns both 2D and 3D estimates of

joint locations.

Figure 3. Multi-camera reconstructions showing sampled 3D er-

rors from the test-set, sorted from small to large, for both protocol

1 and protocol 2. Ground-truth reconstructions are given in blue,

and the rows labelled protocol 1 and protocol 2 both show the same

reconstructions in red, however protocol 1 shows the reconstruc-

tion unaligned with the ground-truth, and protocol 2 shows the

reconstruction aligned to the ground-truth. See section 5 for more

details of the protocols.

frames taken from the test-set of Human3.6M dataset. The

sorted error plot is based on sampling the error every 10th

frame of trial 1.

6. Conclusion
We have shown a novel approach to markerless multi-

camera motion-capture with a multi-stage architecture that

allows us to recover from initial misdetections, and still

make use of image cues in locating joints in subsequent

stages.

We have demonstrated the clear benefits and robust-

ness of our approach by noticeably improving over existing

multi-view markerless motion capture system. In addition

to this, we have shown how existing methods can be im-

proved by using our approach as an initial first step to label

otherwise unlabelled data.
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