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Further details of how the physical mechanisms for mix-

ing depend on the dimensional numbers

This section has three parts. The first part is a brief discussion of the effect of stirring a

solution at speed u. This puts the effect of convection, which also induces flow, in context.

The second and third parts are brief examples of how we can use the dimensionless numbers

to predict how mixing occurs. These are for free-interface diffusion, and for a system with a

semipermeable membrane, respectively.
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Table S1: Table of six key dimensionless numbers, typical values, and a brief comment on the implication
of each value. The top two values are for a stirred volume, the bottom four are for convection. The values
are for a cubic volume L = 5 mm across (125 µl), with a gradient of NaCl concentration from 0.5 to 0 M.

The parameter values used for the salt solution are a viscosity η = 0.9× 10−3Pa s,1 mass densities of
ρ = 997 kg m−3 for pure water, and 1017 kg m−3 for 0.5 M NaCl solution,2 and a diffusion constant for
salt of Dcoop = 1.6× 10−9 m2s−1 at 298 K.3–5 The value for BiS assumes a diffusion constant inside the

membrane DM = Dcoop/30, and a semipermeable-membrane width of w = 40 µm.

number value for 125 µl comment
NaCl solution

Stirring at speed u = 1 mm s−1

Péclet 5000 flow across volume faster than diffusion
Pe

Reynolds 5 flow not quite laminar, can mix
Re

Convection
Rayleigh 107 convection in liquid

RaS

Sherwood 30 convection accelerates mixing
Sh by a factor of ∼ 30

Grashof 104 flow not laminar so mixes
GrS even independently of diffusion
Biot 0.1 rate of transport through membrane
BiS 10 % of rate through solution volume

Mixing in systems stirred at a stirring speed u

For a volume L across, if the solutions are flowing at a speed u, then the timescale for flow

to cross the volume is

τXu =
L

u
(1)

If this timescale is much larger than τMIXD then mixing is via diffusion alone, but this is rare.

The ratio τMIXD/τXu is so common and useful that it has a name: the Péclet number

Pe =
τMIXD

τXu

=
uL

Dcoop

(2)

Mixing is a problem in fluid mechanics, and as with many problems in fluid mechanics, to

work out what is going on, we need to estimate the values of some dimensionless numbers.

The Péclet number is first of these numbers we will be considering here.
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Mixing is only solely due to diffusion when Pe� 1, and this is typically hard to achieve.

Consider a µl volume, which is ∼ 1 mm across. Then a Péclet number much smaller than

one requires any flow to be at speeds of less than 1 µm s−1. This is why mixing is rarely

due to diffusion alone, even for volumes of a microlitre and smaller, and why even modest

amounts of stirring of small volumes, accelerate mixing.6–8 The small volumes typically used

in protein crystallisation are comparable to those seen in microfluidics, so the review of

Squires and Quake6 of microfluidics, is a very relevant here.

Flows can combine with diffusion to cause mixing at a rate faster than with diffusion

alone.6 However, slow flows, often called Stokes or laminar flows, cannot mix by themselves,

without cooperating with diffusion.6–8 Here, a slow flow is one at small values of another

dimensionless number, the Reynolds number

Re =
ρuL

η
(3)

for ρ the mass density of the liquid (≈ 103kg m−3 for water) and η is the viscosity (≈ 10−3Pa s

for water). Flow at large values of the Reynolds number will mix directly, even in the absence

of diffusion.

For flows due to convection, the analog of the Reynolds number is the Grashof number.6

The Grashof number is defined by

GrS =
∆ρgL3

ρν2
(4)

When the Grashof number is less than one, the flow is laminar, due to inertial effects being

negligible. This has the consequence that without diffusion there is no mixing, i.e., laminar

flow and diffusion can mix faster than diffusion alone, but laminar flow itself cannot mix

on its own. By contrast, even without diffusion, flows with GrS > 1 can mix, and there is

turbulence at large values of GrS.
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Mixing of NaCl in a free-interface diffusion experiment with volume

125 µl volume

To see how the dimensionless numbers discussed in the main text can be used in practice,

we consider a cubic volume L = 5 mm across, filled with a solution which has a NaCl

concentration of 0.5 M NaCl solution at one end, which decreases to zero (pure water) at

the other end. This is at room temperature. Here the relevant numbers are the Rayleigh,

Sherwood and Grashof numbers. Their values are given in Table S1.

The Rayleigh number is far above the 1000 threshold for convection to start in vertical

concentration gradients, so there is strong convection. Also, both the Sherwood and Grashof

numbers are greater than one, so mixing is significantly accelerated by convection, and this

convection is strong enough to mix on its own.

The distribution of salt during mixing by diffusion alone, is a simple gradient, but when

convection is present, the distribution will be much more complex, due to the convective

flows. This complex and heterogeneous distribution of the precipitant salt, means that the

supersaturation will vary by large amounts and in a complex way with space and time.

Both nucleation9–12 and growth rates13,14 are very sensitive to supersaturation. Therefore,

at any one time during mixing, nucleation and growth rates presumably vary by orders of

magnitude across the flow streams, and a growing crystal will experience a highly variable

supersaturation as it grows.

It is worth noting that although we considered a volume of 125 µl, convection occurs

even in much smaller volumes. It has been studied in microfluidics experiments in systems

of heights of only 100 µm.15,16 In such small systems convection is slower but is still present.

Mixing of NaCl in an experiment with a semipermeable membrane

and with a volume 125 µl

We return to the example above of a 125 µl volume, but now the volume is separated by a
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semipermeable membrane from a large reservoir of 0.5 M NaCl solution. We assume that

transport in the large volume is fast enough to keep the concentration on that side near

the assumed fixed bulk concentration. Then, if we, for example, assume a semipermeable

membrane of width w = 40 µm, and that the diffusion constant for NaCl inside the semiper-

meable membrane is 30 times smaller than in the bulk, i.e., DM = D/30, we obtain the Biot

number in Table S1. This is BiS = 0.1. For this system the mixing time is mostly determined

by diffusion across the semipermeable membrane, because it is about ten times slower than

mixing inside the chamber.

Figure S1: Microscope image of a grid of known dimensions used to calibrate our images. The crossbars are
40 µm across and the gaps are 100 µm across. We make 20 measurements, using the Fiji distribution of
ImageJ (https://fiji.sc/),17,18 on this image and as a result determine that one pixel is 0.9± 0.04 µm.
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Figure S2: The equilibration time for 3 M NaCl, τ1/2, as a function of the ratio DM/D. The blue curve is
for diffusion only (no convection), and the orange curve is for an effective diffusion constant

D = 8/5× 10−8m2 s−1, to account for a speed up by a factor of Sh = 53 due to for convection. The purple
lines are at the experimental values for τ1/2. The solid line is at the mean of the three best-fit values, and
the dashed lines bound the 95% CI. The behaviour is similar to that with 0.5 M NaCl (Figure 6 of main

text). The experimental τ1/2 is a little lower and the Sherwood number is about twice as big, but these are
the only differences.

Estimating the overlap concentration of polymers c∗ us-

ing measurements of the intrinsic viscosity

In polymer solutions, the boundary between the dilute regime and unentangled semidilute

regime is at the overlap concentration, c∗.19,20 We estimate c∗ using measurements of the

intrinsic viscosity.19 The intrinsic viscosity for PEG in water is defined19 by the ratio

[η] =
η(c)− ηW
ηWc

c→ 0 (5)

i.e., it is defined in the limit of low polymer concentration, c. Here η(c) is the viscosity of

the polymer solution, and ηW is the viscosity of pure water. For PEG solutions in water,

measurements have been used to obtain an expression for the intrinsic viscosity as a function

of MW,21

[η] = 2.0 + 0.016MW0.76 ml g−1 (6)
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Then we define the overlap concentration as one over the intrinsic viscosity (which has units

of inverse concentration not viscosity)

c∗ =
1

[η]
(7)

We use % w/v = g/100 ml not g/ml so we simply convert to a c∗ in our units by multiplying

by 100. The values for c∗ for the three MWs we study are in Table 2 of the main text.

Concentration dependence of the bulk mixing time τMIXDC

Here we look at how varying the concentration of a salt or of PEG, affects mixing in the bulk.

This is in the regime where mixing is due to a combination of diffusion and convection, and

so the relevant timescale is τMIXDC. Within our simple model, the concentration dependence

of τMIXDC comes from both the cooperative diffusion constant and the Sherwood number

τMIXDC ∝ 1/(DcoopSh) (8)

Below we first consider salts then polymer solutions.

Bulk mixing time τMIXDC for salts

For salts the cooperative diffusion constant varies only weakly with concentration, for NaCl

the cooperative diffusion constant varies only by of order 10 % from very low to molar concen-

trations.5 Thus in the absence of convection, mixing times for salts are almost independent

of the concentration.

If there is convection, then the mixing time will depend on the Rayleigh number. The

viscosity varies only weakly with concentration,2 while the mass density difference varies

approximately linearly with salt concentration. So the Rayleigh number varies essentially

linearly with salt concentration, due to the variation of the mass density difference. As our
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formula for the Sherwood number scales as Ra
1/3
S , the mixing time in the bulk scales with

salt concentration approximately as

τMIXDC ∼ 1/(DcoopSh) ∼ c−1/3 (9)

This inverse cube root dependence is a weakly decreasing function of increasing salt concen-

tration. Thus we predict that on increasing salt concentration, the amount of convection

slowly increases, and so mixing times slowly decrease.

Bulk mixing time τMIXDC for polymer solutions

As for salt solutions, the mass density difference to pure water varies approximately linearly

with PEG concentration.22 The mass density is approximately independent of MW. In the

dilute regime (c < c∗), where the PEG polymer coils do not overlap, the diffusion constant is

approximately constant at its Stokes-Einstein value, and the viscosity is close to that of the

solvent (water). Thus, in the dilute regime, diffusion varies only weakly with concentration,

but convection will increase, just as it does for salts, see eq (9).

However, in the semidilute regime where the polymer coils overlap, both the cooperative

diffusion constant and the viscosity vary with polymer concentration. For the PEG MWs

we consider (of order 1000s) there are only two regimes: dilute (c < c∗) and unentangled

semidilute (c∗ < c < ce),
23 as discussed in the main text.

Dynamics of unentangled semidilute polymer solutions

The Rouse/de Gennes model20,23–25 is widely used for unentangled semi-dilute polymers

(c∗ < c < ce). Here we will restrict ourselves to just looking at how the timescale for mixing

scales with concentration,20 i.e., if in the semidilute regime we expect mixing to speed up or

slow down.

We will also switch from concentration c to volume fractions φ = ρa3, where ρ is the
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number density of monomers and a3 is the volume of a monomer. Polymer concentration

c and φ are proportional to each other. The overlap and entanglement volume fractions

are φ∗ and φe, respectively. We use the number of monomers N , related to the MW by

N =MW/MW0, for MW0 the molecular weight of a monomer.

The de Gennes model treats the polymers in an unentangled semidilute polymer solution

as composed of a chain of blobs ξ across. Within blobs a polymer’s configuration is close to

that in the dilute solution, while over distances greater than ξ interactions between different

polymer molecules dominate. Over those distances hydrodynamic interactions are screened

and so Rouse dynamics is approximately correct.24

The de Gennes scaling prediction for the blob-size/correlation-length ξ, is ξ = aφ−3/4 ∝

c−3/4. Here and below we use Flory’s value ν = 3/5 for the scaling of the polymer radius of

gyration with the number of monomers.20 The number of monomers in a blob is g = φ−5/4.

For the cooperative or collective diffusion coefficient, the Rouse/de Gennes prediction is

that collective diffusion is approximately that of quasi-ideal (i.e., Stokes-Einstein) blobs of

the correlation size ξ 20,23

Dcoop ∼
kT

6πηsξ
∝ MW0φ3/4 for φ∗ < φ < φe (10)

this is Eq. VII.24 of de Gennes.20 Here ηs is the viscosity of the solvent, Note that in this

regime, the collective diffusion constant does not depend on MW, and increases with polymer

concentration c as c3/4.

The contribution of the polymer to the viscosity (at low shear rates) is approximately a

long-time modulus, G, times the longest relaxation time, τPC , which is that of the polymer

chain, i.e.,

ηROUSE ∼ GτPC (11)

Here, and below we follow chapter eight of Rubinstein and Colby.24 Within a Rouse model
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the modulus is just kT times the number density of chains

G = kT
φ

Na3
(12)

and in the Rouse model the longest relaxation time is just that for a polymer chain of radius

R to diffuse its own radius, i.e.,

τPC =
R2

Dself

(13)

where Dself is the self (not collective) diffusion constant of the polymer. Note that relaxation

of the stress requires diffusion of one polymer molecules relative to the surrounding polymer

molecules, so the required diffusion constant is the self-diffusion constant.

In semidilute polymer solutions, the polymers are approximately ideal at lengthscales

over ξ, so the radius R is

R = ξN
1/2
ξ = aφ−1/8N1/2 (14)

where Nξ = N/g is the number of blobs per polymer chain. In the Rouse model the drag on

each monomer is additive, so the self-diffusion coefficient is that for a blob divided by Nξ

Dself =
kT

6πηsξNξ

=
kT

6πηsNφ1/2
(15)

Note that this decreases with increasing polymer concentration, unlike the cooperative dif-

fusion constant that increases.

Finally, using eq (13), we have

ηROUSE = 6πηsN
2φ5/4 (16)

the contribution of unentangled semidilute polymer to the viscosity increases as c5/4.
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Rayleigh and Sherwood numbers in unentangled semidilute polymer solutions

The concentration of a salt or PEG affects the Rayligh number in three ways, by changing:

the mass density, the viscosity, and the collective diffusion constant. The Rayleigh number

is

RaS =
∆ρL3g

Dcoopη
∼ c

c3/4c5/4
∼ c−1 for c∗ < c < ce (17)

where we used a linear scaling for ∆ρ, eq (10) for Dcoop, and eq (16) for the viscosity. In

the semidilute, non-entangled regime, Ra decreases as one over the concentration. This is

because the increasing mass density difference is more than outweighed by the increasing

viscosity and collective diffusion constant. This in contrast to the dilute regime where only

the mass density difference strongly depends on cocentration and so convection increases

with increasing concentration.

The Schmidt number is

Sc =
ν

Dcoop

=
ηRouse
Dcoopρ

∼ c5/4

c3/4
∼ c1/2 for c∗ < c < ce (18)

Then substituting eqs (17) and (18) into the simple empirical formula of Globe and Drop-

kin26,27 (eq (8) of the main text), we have that the Sherwood number is

Sh ∼
(
c−1

)1/3(
c1/2

)0.074 ∼ c−0.30 for c∗ < c < ce (19)

And finally, we have the prediction that the timescale for bulk mixing scales with PEG

concentration as

τMIXDC ∼ 1/(DcoopSh) ∼ c−0.45 for c∗ < c < ce. (20)

In the unentangled semidilute regime, the bulk mixing time decreases slowly with increasing

concentration. As ce ∼ 10c∗,23,24 this holds over a range of concentrations of about an order

of magnitude.

If we compare salt solutions and semidilute (but unentangled) polymer solutions, we
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see that in both cases the mixing times in the bulk are predicted to slowly decrease with

increasing concentration. However, the mechanisms for this decrease are very different in salt

and polymer solutions. For salt solutions, increasing concentrations strengthens convection

(only) while for polymer solutions the opposite occurs, convection weakens but despite this,

mixing becomes faster as cooperative diffusion becomes much faster.
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